Learning Rational Functions
نویسندگان
چکیده
Rational functions are transformations from words to words that can be defined by string transducers. Rational functions are also captured by deterministic string transducers with lookahead. We show for the first time that the class of rational functions can be learned in the limit with polynomial time and data, when represented by string transducers with lookahead in the diagonal-minimal normal form that we introduce.
منابع مشابه
The best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملA rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations
The purpose of this study is to present an approximate numerical method for solving high order linear Fredholm-Volterra integro-differential equations in terms of rational Chebyshev functions under the mixed conditions. The method is based on the approximation by the truncated rational Chebyshev series. Finally, the effectiveness of the method is illustrated in several numerical examples. The p...
متن کاملSolving Volterra's Population Model via Rational Christov Functions Collocation Method
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...
متن کاملNumerical solution of Troesch's problem using Christov rational functions
We present a collocation method to obtain the approximate solution of Troesch's problem which arises in the confinement of a plasma column by radiation pressure and applied physics. By using the Christov rational functions and collocation points, this method transforms Troesch's problem into a system of nonlinear algebraic equations. The rate of convergence is shown to be exponential. The numer...
متن کاملReaching the Unreachable: Technology and the Semantics of Asymptotes
This work is part of a larger attempt to explore the nature of symbolic understanding involving graphic technology. This study describes learning advanced mathematics that occurs through constructing qualitative reasoning methods using graphic technology. Data was gathered from a precalculus class who, for a few weeks, investigated and explored asymptotic behavior of rational functions. The ana...
متن کامل